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ABSTRACT: A polymeric fiber postspinning draw model
is developed. The fiber is stretched between the take-up roll
and the draw roll and then relaxed between the draw roll
and the relax roll. The behavior of the polymeric material is
described by a cooperative elastic–viscoplastic model for a
wide range of temperatures and strain rates. The profiles of
the fiber velocity, stress, strain rate, and temperature be-
tween the different rolls are simulated via the coupling of
the cooperative model with the mass, momentum, and en-
ergy equations and the boundary conditions. Simulations
are conducted with the finite-element method. The com-
puted results show an increase in the fiber stress between

the take-up roll and the draw roll due to the molecular
orientation and the increase in the crystallization percent-
age. The sliding distance of the fiber on the draw roll is
related to the draw ratio and fiber stiffness. A dramatic drop
in the fiber strain rate on the draw roll leads to relaxation of
the intermolecular resistance followed by a freeze of the
fiber structure when the strain rate vanishes to zero on the
draw roll and between the draw roll and the relax roll. © 2006
Wiley Periodicals, Inc. J Appl Polym Sci 100: 2259–2266, 2006
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INTRODUCTION

For many industrial applications, the utilization of
polymers is generally determined by the mechanical
response of these materials within a large domain of
temperatures and strain rates. The final mechanical
and optical properties of a polymeric fiber or film are
strongly influenced by the postspinning draw. In fiber
and film manufacturing processes, polymeric fibers
and films are drawn through a series of rollers to
improve their mechanical and optical properties. The
behavior of polymeric materials in this process is
strongly affected by the stress level, rate of loading,
and temperature. The rate and temperature effects are
closely related to thermally activated micromechanical
processes.1 A temperature- and strain-rate-dependent
cooperative model developed by Richeton et al.2,3 is

used in this work to relate the macroscopic elastic–
viscoplastic finite deformation of polymeric materials
during the postprocessing to the micromechanical be-
havior of these materials under large deformation.

This article focuses on the modeling of the postspin-
ning draw of fibers during the fiber-spinning process.
Work on the fiber-drawing process under isothermal
conditions was reported by Bechtel et al.4,5 In their
modeling, the elastic–plastic constitutive equation is
assumed to be independent of the temperature and
strain rate. Figure 1 presents a schematic of the fiber-
spinning process. In the postdrawing stage of this
process, the fibers are stretched between the take-up
roll and the draw roll at a temperature above the glass
temperature and then relaxed between the draw roll
and the relax roll. To model this process, mass, mo-
mentum, and energy equations are coupled with a
polymeric constitutive equation and boundary condi-
tions (see the Governing Equations section). The nu-
merical simulation is made possible by means of the
finite-element method.

GOVERNING EQUATIONS

In the postspinning draw stage of the fiber-spinning
process, the polymeric fiber is fully solid, and the
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variation of the radial temperature can be assumed to
be constant. The fiber conduction heat transfer is ne-
glected. Therefore, the fiber axial velocity and temper-
ature are assumed to be uniform over the fiber cross
section. The fundamental steady-state one-dimen-
sional equations governing the fiber’s postspinning
draw can be obtained by the radial averaging of the
continuity, momentum, and energy balances in a cy-
lindrical coordinate system.6 The fiber is assumed to
be axisymmetric on the rolls.

Mass balance

In a one-dimensional model, the mass balance equa-
tion can be written as follows:

W � �Avz (1)

where W is the mass flow rate, A � (�D2)/4 is the fiber
cross section, D is the fiber diameter, � is the polymer
density (assumed to be constant in this study), and vz

is the fiber axial velocity.

Momentum balance

Neglecting the aerodynamic drag and gravity on the
filament, we can write the force balance in the follow-
ing form:

W
dvz

dz �
d
dz�A�Tzz � Trr�� �

1
2�s

dD
dz � f

Tinit

�Tzz � Trr�

� �WvR � Wvz

r0
� (2)

where the term on the left-hand side is the inertia. On
the right-hand side, the first term is the axial variation
of the average tensile force, F � A(Tzz � Trr), where Tzz

and Trr are the axial and radial components of the
Cauchy stress tensor (see the Finite Deformation sec-
tion) and Tzz � Trr is the fiber equivalent stress. The
second term is the force related to the action of the
surface tension, s. The third term represents the fric-
tion between the fiber and the rolls. The parameter
Tinit is the fiber equivalent stress at the take-up roll
(i.e., the initial stress corresponding to the stress de-
veloped in the spin line between the spinneret and
take-up roll). As for the other parameters, vR is the roll
velocity, r0 is the roll radius, and f is the friction
coefficient. This term represents the projection of the
resultant force between the fiber centrifugal force and
the reaction force of the roll on the fiber. This term is
divided by the equivalent stress (Tzz � Trr) to take
account of the stiffness of the fiber; the stiffer the fiber
is, the weaker its adhesion becomes to the roll.

Energy equation

The conservation of energy can be written as follows:

�Cpvz

d�

dz � �
4
Dh�� � �a� � �Tzz � Trr�

dvz

dz � ��Hf

d�

dz

(3)

where �a is room temperature. In the left-hand-side
term, the heat capacity, Cp, is a function of the absolute
degree of crystallinity, �, and the temperature: Cp �
Cs� � C�(1 � �), where Cs and C� are the heat capac-
ities of the crystalline phase and the amorphous phase,
respectively. These parameters are represented as qua-
dratic functions of temperature � (°C) as follows:7

Cs��� � Cs1 � Cs2� � Cs3�
2;

C���� � C�1 � C�2� � C�3�
2 (4)

The first term on the right-hand side is the convec-
tive-heat-transfer term between the fiber and the
quench air, with h being the convective-heat-transfer
coefficient. h is controlled by the fiber diameter, fiber
velocity, and temperature-dependent physical proper-
ties of the cooling medium:8

h � 0.42	s
s
�0.334D�0.666vz

0.334�1 � �8vy/vz�
2�0.167 (5)

Figure 1 Schematic of the fiber-spinning process.
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where vy is the transverse velocity of the cooling me-
dium, 	s is the local heat conductivity, and vs is the
local kinematic viscosity. In the dry air, at atmospheric
pressure, as a cooling medium, 	s and vs are expressed
as follows:8

	s � 4.49 � 10�5�f
0.866 (cal m�1 s�1 °C�1)


s � 1.446 � 10�9
�f

1.5

�f � 113.9 (m2 s)

where �f is defined as the arithmetic mean of the fiber
temperature and quench air temperature.

The second term on the right-hand side of eq. (3) is
the viscous dissipation, and the last term is related to
the release of latent heat, where � is the average
absolute degree of crystallinity. The heat of crystalli-
zation per unit of mass, �Hf, is expressed as function
of temperature � (°C) as follows:7

�Hf��� � �Hf�0� � �C�1 � Cs1��

� �C�2 � Cs2�
�2

2 � �C�3 � Cs3�
�3

3 (6)

In eq. (3), the friction heat on the roller is neglected.

Constitutive equation

The temperature- and strain-rate-dependent coopera-
tive model for the determination of the yield stress is
used to describe the finite-deformation behavior of
polymeric materials.3 In this work, we briefly address
the cooperative model; for more detail, we refer the
reader to ref. 3. The cooperative model is based on the
idea that the yielding is triggered when an ensemble
of polymer chain segments move cooperatively at the
same time. To take into account the significance of the
activation volume during the yield process, Fothering-
ham and Cherry9 introduced the concept that yielding
involves a cooperative motion of polymer chain seg-
ments. According to the strain-rate/temperature su-
perposition principle,10 a recent development of the
cooperative model3 has shown that this type of model
predicts the yield stress for a wide range of strain rates
(low to high) and for a wide range of temperatures
(below and above the glass-transition temperature).
The resulting model is an Eyring-like equation in
which the hyperbolic sine function is raised to the nth
power.11 When the internal stress is neglected, the
plastic shear flow increment �̇p is expressed as follows:

�̇p � �̇*���sin hn� V
2k�

��3��� (7)

where k is the Boltzmann’s constant, V is the activation
volume, n is an activation parameter, and � is the
effective shear stress. The characteristic shear strain
rate, �̇*(�), is thermally activated and is given by

�̇*��� � �̇0exp� �
�H

k� � (8)

where �̇0 is a constant pre-exponential shear strain rate
and �H is the -activation energy.

Finite deformation

The three-dimensional constitutive model for large
deformation behavior is based on the work of Boyce et
al.12 and Ahzi et al.13 The analog representation con-
siders intermolecular resistance (resistance A) acting
in parallel with network resistance (resistance B; see
Fig. 2). The total imposed deformation gradient, F, is
identical to both the intermolecular deformation gra-
dient, FA, and the network deformation gradient, FB (F
� FA � FB), and the total Cauchy stress tensor, T, is the
sum of the intermolecular Cauchy stress, TA, and the
network Cauchy stress, TB (T � TA � TB). The velocity
gradient is L � ḞF�1 � D � W, where D is the rate of
deformation and W is the spin. The velocity gradient
tensor of uniaxial extension is given by

L � � �
�̇eq

�
�̇eq

�eq

� (9)

where 
 is the Poisson ratio and �̇eq � dvz/dz is the
equivalent strain rate. In this work, we briefly address
the contributions of the network resistance [see the
Network Resistance (Resistance B) section] and the
intermolecular resistance [see the Micromechanics of
the Two Phases and Averaging Schemes (Resistance
A) section] because the details can be found in the

Figure 2 Schematic representation of the breakdown of the
total resistance into intermolecular resistance A acting in
parallel with network resistance B.
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literature (Ahzi et al.,13 Boyce et al.,12 and Arruda and
Boyce14,15).

Micromechanics of the two phases and averaging
schemes (resistance A)

The intermolecular resistance analog representation
(see Fig. 2) is composed of amorphous-phase resis-
tance acting in parallel with crystalline-phase resis-
tance (Ahzi et al.13 This assumption is equivalent to FA

� FA
c � FA

a , where FA, FA
c , and FA

a are the intermolec-
ular, crystalline-phase, and amorphous-phase defor-
mation gradients, respectively.

The crystalline and amorphous deformations can be
decomposed into elastic and plastic components via
the multiplicative decomposition of the deformation
gradient: FA

c � (FA
c )e(FA

c )p and FA
a � (FA

a )e(FA
a )p. The

elastic and plastic deformation gradients of both the
crystalline and amorphous phases can be further de-
composed into a stretch (V) and rotation (R). For
instance, (FA

i )e � (VA
i )e(RA

i )e, where superscript i rep-
resents the phases (i � a or c).

The intermolecular Cauchy stress tensors for the
crystalline and amorphous phases are constitutively
related to their corresponding elastic stretch tensors,
VA

a,c: TA
a,c � 1⁄JCa,c[ln((VA

a,c)e)], where Ca,c represents the
amorphous and crystalline fourth-order elastic stiff-
ness tensors. Finally, the total intermolecular Cauchy
stress tensor, TA, is given by the rule of mixture:

TA � �TA
c � �1 � ��TA

a (10)

where � is the volume fraction of the crystalline phase.
The explicit method for the calculation of the amor-

phous-phase and crystalline-phase Cauchy stresses at
each element can be summarized as follows:

Do Loop Ft and Ft��t
p are known.

Ft��t � Ft � LFt � �t

Ft��t
e � F

t��tFt��t
p

TA �
1
JC	ln[(VA�e]}

(the calculated stresses)

�VA�e � �Ft��t
e �Ft��t

e �T�1/2

Ft��t
p � Ft

p � Dp�t

(update the plastic gradient of the deformation for the
next time step)

Dp �
�̇

��2
T
A

where

� � �1
2T
AT
A

End Loop TA
 is the deviatoric Cauchy stress.

Network resistance (resistance B)

The Cauchy stress representing the network resistance
can be determined by statistical rubber–elastic theory
based on the eight-chain model of Arruda and
Boyce.14,15 This is given by the following deviatoric
stress–stretch relation:

TB �
1
JB

CR

�N

	� N

��1� 	� N

�N��B� N � �	� N�2I] (11)

where JB, N, and CR are the network volume change,
the number of rigid links between the entanglements,
and the rubbery modulus, respectively. Also, ��1 is
the inverse Langevin function, given by ��1(x)
� coth(x) � (1/x). The stretch on each chain in the
network, �N, is given by �N � [1⁄3tr(BN]1/2 where BN is
equal to FB(FB)T, FB is equal to (JB)�1/3FB, andFB is
known from the Finite Deformation section.

Strain-induced crystallization

If we denote by �� the maximum degree of crystallin-
ity, the crystallinity, �, and the rate of crystallization
are given by

� � ��y, � � ��ẏ (12)

where y is the degree of transformation. The rate of
transformation is expressed with a phenomenological
expression derived by Doufas et al.7 on the basis of the
Avrami equation and then modified by Ahzi et al.13 to
account for the strain rate. The evolution equation of
the rate of transformation, ẏ, as a function of the
developed Cauchy stress, T, and the composite shear
modulus, Gcom, can be expressed as follows:

ẏ �
dy
dt �

�̇eq

�̇ref
mKav���� � ln�1 � y���m�1�/m

� �1 � y�exp��
trT
Gcom

� (13)

where m is the Avrami exponent, � is a dimensionless
model parameter, � is the test temperature, �̇eq
� dvz/dz is the applied equivalent strain rate, �̇ref is a
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reference strain rate, and Kav(�) is the transformation
rate function:

Kav��� � Kmaxexp� � 4ln 2
� � �max

Dav
� (s�1, � in °C) (14)

NUMERICAL METHOD

A one-dimensional finite-element discretization of the
momentum and the energy equation is used to solve
for the velocity and temperature, at each iteration,
with Newton’s method. The resulting temperature
and velocity at each node are used to solve for the
stress [eqs. (7)–(11)] and the degree of transformation
[eq. (13)]. The two variables needed for the calculation
of the total stress, T � TA � TB, are the temperature
and the strain rate, �̇eq. The strain rate entering eq. (9)
is the variation of the velocity in the axial direction.
The stress and degree of transformation are calculated
explicitly, element by element. Once the velocity gra-
dient tensor [eq. (9)] is calculated, the deformation
gradient, F, needed for the calculation of the stress, T,
is determined explicitly: Ft��t � Ft � LF�t. Each ele-
ment degree of transformation, �̇, and total gradient of
deformation, F, are used as the initial input for the
next element. The strain rate, �̇eq, and temperature, �,
at each element are taken as an average of the corre-
sponding element’s nodes.

In the first iteration, the stress components entering
the momentum and the energy equations are taken to
be zero.

RESULTS AND DISCUSSION

To verify the described model, we chose isotactic
polypropylene (iPP) because the experimental data
needed for the calibration of the constitutive equation
(see the Governing Equations section) could be found
in the Center for Advanced Engineering Fibers &
Films (CAEFF) database.16 To determine the model
parameters for the iPP material, a uniaxial tension test
was performed on a single iPP fiber at a temperature,

� � 35°C, above the glass-transition temperature and
at a constant strain rate, �̇ � 0.08�1. The predicted
true-stress/true-strain response (see Fig. 3) and the
crystallinity percentage (see Fig. 4) were compared
with our experimental data16 to fit the model param-
eters. The true-stress/true-strain curve exhibits the
four characteristic regions of a polymeric material
above the glass-transition temperature. Under small
deformation, the material exhibits a relatively stiff
modulus, followed by a rollover to flow around 2.5
MPa. At a moderate deformation, the material shows
gradual stiffening followed by a dramatic hardening
at a large deformation.

The model parameters and physical properties of
iPP are shown in Tables I and II. These parameters are
used in the constitutive equation (see the Governing
Equations section), which is coupled with the mass
equation, momentum equation, energy equation, and
boundary conditions to predict the fiber property pro-
files during the postdrawing. In Figures 5, 6, 9, and 10
(shown later), we present the results for the fiber
length between the take-up (� � 0 m) and � � 2 m
because these variables remain constant for the rest of
the fiber length.

Figure 3 Stress–strain response at a strain rate of 0.08 s�1 in
comparison with the experimental results at 25°C.

Figure 4 Crystallinity versus the true strain at a strain rate
of 0.08 s�1 in comparison with the experimental results at
25°C.

TABLE I
Fiber Stretch Parameters

Parameter Value Equation

V 4.6622 � 10�29 (7)
n 3.65 (7)
�̇0 2.25 � 107 (8)
�H 1.08 � 104 (8)
� 25°C (7), (8), and (13)

 0.43 (9)
CR 0.15 MPa (11)
N 9 MPa (11)
�̇eq 0.08 s�1 (13)
�̇ref 1.7 s�1 (13)
�� 0.7 (12)
Kmax 0.55 (14)
�max 65°C (14)
Dav 60°C (14)
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The final fiber mechanical and structural properties
are mainly related to the draw ratio (DR) between the
draw roll and take-up roll velocities. The initial fiber
velocity (take-up roll velocity) is 80 m/s. The relax roll
is set to the same velocity as the draw roll to allow the
fiber to relax. In Figure 5, the profile of the fiber strain
rate versus its length is shown for DR � 2 and for
different initial fiber equivalent stresses (the initial
fiber stress is the fiber stress at the take roll developed
between the spinneret and take-up roll). The strain
rate increases dramatically close to the take-up roll
and then decreases nonlinearly to zero on the draw
roll. The strain-rate peak close to the take-up roll is
due to the unbalanced forces between the inertial force
and the tensile force. A higher tensile stress causes the
inertial force in the fiber, which originates at the draw
roll, to dissipate more quickly. Indeed, a higher fiber
initial stress results in higher overall fiber stress,
which results in a lower strain-rate peak. The peak
height is also a function of the DR between the draw
roll and the take-up roll. For the same equivalent
initial stress, Tinit � 0.5 MPa, the peak height drops

significantly when the DR decreases (see Fig. 6). In
fact, the lower the fiber DR is, the lower the fiber strain
is, and this leads to lower inertial force and a lower
peak. Control of the strain rate close to the take-up roll
can be used to avoid fiber breakage, which may result
from significant acceleration in this region. After the
peak, the strain-rate curve shows two different regions
with two different slopes before vanishing to zero. The
first region represents the fiber strain rate between the
take-up roll and the draw roll, and the second region
represents the fiber on the draw roll. The second re-
gion shows the fiber sliding length before its velocity
reaches the draw roll velocity. This length depends on
the take-up velocity and the fiber stress level. The
strain rate [Figs. 6(a) and 7] vanishes when the fiber
velocity reaches the draw roll velocity.

Figure 7 illustrates the contribution of the network
resistance and intermolecular resistance to the total
fiber stress in the postdrawing process for DR � 2 and
Tinit � 0.5 MPa. The fiber stretching between the take-
up roll and the draw roll increases the intermolecular
and network resistances, and this results in the in-
crease in the overall fiber stress. On the draw roll, the
fiber stress decreases and then becomes constant when
the strain rate is zero. The network resistance in Figure

TABLE II
Postspinning Draw Parameters

iPP property Value Equation

� 0.85 g/cm3 (1)
s 35 dyn/cm (2)
Cs1 0.2502 cal/g °C (4) and (6)
Cs2 7 � 10�4 cal/g °C2 (4) and (6)
Cs3 0 cal/g °C3 (4) and (6)
Cl1 0.3243 cal/g °C (4) and (6)
Cl2 5.65 � 10�4 cal/g °C2 (4) and (6)
Cl3 0 cal/g °C3 (4) and (6)
vy 0 m/s (5)
�Hf (0) 30 cal/g (6)
Processing

parameters
W 1.3345 � 10�6 kg/s (1) and (2)
r0 0.08 m (2)
�a 25°C (3)

Figure 5 Predicted profile of the fiber strain rate (s�1) for
different fiber initial equivalent stresses (stresses at the take-
up roll) and at a roll temperature of 35°C.

Figure 6 Predicted profile of the fiber strain rate (s�1) for
different DRs between the draw roll and take-up roll at a roll
temperature of 35°C.

Figure 7 Contribution of the network resistance and the
intermolecular resistance to the fiber total true stress for DR
� 2 at a roll temperature of 35°C and an initial fiber equiv-
alent stress of 0.5 MPa.
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7 shows a small variation in the region in which strain
rate drops rapidly because of the slow variation of the
fiber total deformation gradient, which in turn allows
the molecular chains of the amorphous phase to relax
and decreases the intermolecular resistance.

The effect of the fiber initial stress on the fiber total
stress under a DR of 2 is shown in Figure 8. With an
increase in the initial stress, the curves of the total
stress move higher, and this leads to stiffer fibers.
Consequently, higher fiber stiffness results in weaker
friction on the draw roll, which increases the sliding
distance. The constant total stress after the intermolec-
ular relaxation marks the end of the sliding distance.
This behavior is reflected in the fiber velocity curves
(see Fig. 9): the fiber with high stress shows a low
velocity and a longer sliding distance. The limit of the
sliding distance on the draw roll is achieved when the
strain rate vanishes at the moment at which the fiber
velocity becomes equal to the draw roll velocity.

The effects of the DR and the fiber stress level on the
crystallinity percentage for Tinit � 0.5 MPa are shown
in Figure 10. A higher DR results in a higher fiber
crystallinity percentage because of the high amount of
deformation. For the same DR of 2, the curves in
Figure 10 show that the rate of crystallization de-
creases when the initial stress increases and the strain
rate decreases (see Fig. 5), and this agrees with the
experimental results of Salem.17,18 The curves con-

verge to the same value after the fiber velocity reaches
the imposed DR, suggesting that the final fiber crys-
tallinity percentage depends on the amount of defor-
mation but not on the history of the deformation.

The fiber temperature profile is shown in Figure 11 for
two different DRs with the same Tinit value (0.5 MPa).
The temperatures of the take-up roll, draw roll, and relax
roll are set to 35°C. Between the take-up roll and draw
roll, the decrease in the fiber temperature due to convec-
tive heat transfer is limited by the gain of heat from the
fiber’s plastic deformation. Between the draw roll and
the relax roll, the fiber plastic deformation is zero, and
the only fiber heat transfer is by convection. With an
increase in the DR, the temperature change between the
take-up roll and draw roll is due to the change in the
convection coefficient, which is a function of the fiber
velocity and fiber diameter. Between the take-up roll and
draw roll, in addition to the change in the convection
coefficient, there is an increase in the heat gain with the
fiber plastic deformation. As can be seen in eq. (3), the
total plastic work is assumed to be converted to heat.

CONCLUSIONS

We have successfully implemented a model for the sim-
ulation of fiber postdrawing, coupling a polymeric con-
stitutive equation for finite deformation with the mass

Figure 8 Fiber stress–strain profile for different fiber initial
equivalent stresses at a roll temperature of 35°C and at DR � 2.

Figure 9 Fiber velocity profile for different fiber equivalent
initial stresses at a roll temperature of 35°C and at DR � 2.

Figure 10 Fiber crystallinity for different fiber equivalent
stresses and DRs at a roll temperature of 35°C.

Figure 11 Fiber temperature profile for different DRs at a
fiber initial equivalent stress of 0.5 MPa and a roll temper-
ature of 35°C.
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balance, momentum balance, energy and rate of crystal-
lization equations. The simulations were conducted with
a one-dimensional finite-element method. However, the
constitutive relations are three-dimensional. The pre-
dicted results show a strong dependence of the fiber
strain rate close to the take-up roll on the DR and fiber
stress level in this region. Close to the take-up roll, a fiber
with high stiffness and a low DR develops a low strain-
rate peak, which helps to prevent fiber breakage. On the
draw roll, the sliding distance depends on the fiber stress
level. Higher fiber stiffness results in a higher sliding
distance. The final fiber crystallinity percentage depends
on the amount of deformation and not on the history of
the deformation. The fiber temperature is governed by
the heat loss by convection and heat gain by fiber plastic
deformation. Between the take-up roll and draw roll,
plastic deformation plays the important role of limiting
the fiber temperature decrease by convective heat trans-
fer. Between the draw roll and the relax roll, the fiber
does not deform, and the only heat transfer is by con-
vection, which depends on the DR as the convection
coefficient depends on the fiber velocity and diameter.

The authors thank Amit Naskar of Clemson University for
the experimental data on the crystallization percentage.
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110, 39.
3. Richeton, J.; Ahzi, S.; Daridon, L.; Rémond, Y. Polymer 2005, 46,
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